приблизительное представление - traduction vers Anglais
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

приблизительное представление - traduction vers Anglais

Непрерывное представление; Линейное представление; Приводимое представление; Простое представление; Представление групп; Непрерывное линейное представление

приблизительное представление      
получить приблизительное представление о      

• The functions enable us to gain (or get) a rough idea (or notion) of these magnitudes.

приблизительное представление о ... даёт      

A rough measure (or idea) of the resistance of a glass to crystallization is given by the displacement of ...

Définition

Параметрическое представление

функции, выражение функциональной зависимости между несколькими переменными посредством вспомогательных переменных Параметров. В случае двух переменных х и у зависимость между ними F (х, у) = 0 может быть геометрически истолкована как уравнение некоторой плоской кривой. Любую величину t, определяющую положение точки (х, у) на этой кривой (например, длину дуги, отсчитываемой со знаком + или - от некоторой точки кривой, принятой за начало отсчёта, или момент времени в некотором заданном движении точки, описывающей кривую), можно принять за параметр, в функции которого выразятся х и у:

x = φ(t), у = ψ(t). (*)

Последние функции и дадут П. п. функциональной зависимости между х и у, уравнения (*) называют параметрическими уравнениями соответствующей кривой. Так, для случая зависимости x2 + y2 = 1 имеем П. п. х= cos t, у = sin t (0 ≤ t < 2π) (параметрические уравнения окружности); для случая зависимости х22 = 1 имеем П. п. ; (t ≠ 0) или также х = cosec t, y=ctg t (- π< t < π, t ≠ 0) (параметрические уравнения гиперболы). Если параметр t можно выбрать так, что функции (*) рациональны, то кривую называют уникурсальной (см. Уникурсальная кривая); такой является, например, гипербола. Особенно важно П. п. пространственных кривых, т. е. задание их уравнениями вида: х = φ(t), у = ψ (t), z = χ (t). Так, прямая в пространстве допускает П. п. х = а + mt; у = b + nt; z = с + pt, Винтовая линия - П. п. х = a cos t; у = a sin t; z = ct.

Для случая трёх переменных х, у и z, связанных зависимостью F (x, y, z) = 0 (одну из них, например z, можно рассматривать как неявную функцию двух других), геометрическим образом служит поверхность. Чтобы определить положение точки на ней, нужны два параметра u и υ (например, широта и долгота на поверхности шара), так что П. п. имеет вид: х = φ(u, υ), у = ψ (u, υ); z = χ (u, υ). Например, для зависимости x2+ y2= (z2+1)2 имеем П. п. х = (u2-1) cos υ; у = (u2 + 1) sinυ; z = u. Важнейшими преимуществами П. п. являются: 1) то, что они дают возможность изучать Неявные функции и в тех случаях, когда переход к их явному заданию без посредства параметров затруднителен; 2) то, что здесь удаётся выражать многозначные функции посредством однозначных. Вопросы П. п. изучены особенно хорошо для аналитических функций. П. п. аналитических функций посредством однозначных аналитических функций составляет предмет теории униформизации (См. Униформизация).

Wikipédia

Представление группы

Представле́ние гру́ппы — вообще говоря, любое действие группы. Однако чаще всего под представлением группы понимается линейное представление группы, то есть действие группы на векторном пространстве. Иными словами, представление группы — это гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.

Представления групп позволяют свести многие теоретико-групповые задачи к задачам линейной алгебры. Представления групп также имеют приложения в теоретической физике, так как позволяют понять, как группа симметрии физической системы влияет на решения уравнений, описывающих эту систему.

Exemples du corpus de texte pour приблизительное представление
1. О Тибете у них весьма приблизительное представление.
2. - Раньше не особо считал, только приблизительное представление имел.
3. В действительности же центробанки имеют о них только приблизительное представление.
4. Они же о нас имеют весьма приблизительное представление.
5. Но и о процессе мобилизации у них очень приблизительное представление.
Traduction de &#39приблизительное представление&#39 en Anglais